Phonocardiographic Murmur Detection by Scattering-Recurrent Networks

Philip A Warrick^{1,2}, Jonathan Afilalo²

¹PeriGen Inc., Montreal, Canada, ²McGill University, Montreal, Canada

Abstract

We describe an automatic detector of phonocardiogram murmurs. Our detector composes the scattering transform (ST) and a long short-term memory (LSTM) network. It is trained on data as part of the Heart Murmur Detection from Phonocardiogram Recordings: The George B. Moody PhysioNet Challenge 2022. The ST captures shortterm temporal ECG modulations while reducing its sampling rate to a few samples per typical heart beat. We pass the output of the ST to a depthwise-separable convolution layer which transforms responses separately for each ST coefficient and then combines resulting values across ST coefficients. At a deeper level, 2 LSTM layers integrate local variations of the input over long time scales. We train in an end-to-end fashion as a classification problem with three murmur classes: present, absent or unknown. Additionally, we use the model to classify clinical outcome as normal or abnormal. These two classifications determine whether clinical followup should occur. Our team "PAWPCG" obtained an official score on the hidden test data of 0.637 for weighted accuracy on murmur classification (rank: 27 of 40 teams) and a clinical outcome cost of 15083 (rank: 32 of 39 teams).

1. Introduction

The phonocardiogram (PCG) is a recording of heart sound that provides a low-cost, non-invasive diagnostic tool to assess turbulent blood flow patterns ("murmurs") suggestive of heart valve dysfunction. Physicians' subjective interpretation of PCG sounds has historically had low sensitivity and specificity for the diagnosis of pathological heart murmurs. To improve diagnostic performance, we developed a PCG heart murmur detector using the Scattering Transform (ST) and Long Short-Term Memory (LSTM) networks. The PhysioNet/Computing in Cardiology Challenge 2021 offers a benchmark for automatic detection of heart murmurs from PCG.

Prior literature on PCG classification exhibits a methodological divide: signal processing versus machine learning. On one hand, digital signal processing methods include low-pass filters, fast Fourier Transform, and wavelet transform. On the other hand, machine learning methods include random forests, support vector machines, convolutional neural networks and long short-term memory (LSTM) networks. While feature engineering lacks flexibility to represent fine-grain class boundaries, a purely learned pipeline may lead to uninterpretable overfitting.

Our contribution to the Challenge aims to overcome the divide by combining insights from signal processing and machine learning. At a first stage, we extract time scattering transform (ST) coefficients for each PCG recording. Although this stage is not trainable, it offers numerical guarantees of stability to time warps. At a second stage, we train a depthwise separable convolution (DSC) network, followed by a bidirectional LSTM (BiLSTM) network. While DSC combines local scattering coefficients, the BiLSTM can capture longer-term trends in heart-sound activity. Our system is inspired from previous Challenge work on ECG arrhythmia detection(1).

2. Methods

2.1. Data

The PhysioNet/CinC Challenge 2022 data (2; 3; 4) provides multiple PCG recordings for each patient. Each patient in the Challenge data has one or more recordings from one or more auscultation locations: aortic valve (AV), mitral valve (MV), pulmonary valve (PV), tricuspid valve (TV), and other (Phc). The recordings were collected sequentially (not simultaneously) from different auscultation locations using a digital stethoscope. The number, location, and duration of the recordings vary between patients. The Challenge labels consist of two types: murmur-related labels indicate whether an expert annotator detected the presence or absence of a murmur in a patient from the recordings or whether the annotator was unsure about the presence or absence of a murmur. Outcome-related labels indicate the normal or abnormal clinical outcome diagnosed by a medical expert.

The dataset include recordings from 1568 patients, of which 942 patients with 3163 PCG recordings are used as the training dataset. The remaining 626 patients are reserved as a hidden validation set for Challenge scoring.

2.2. Overall Processing

We presented unpreprocessed PCG signals to an ST representation layer, which reduced the sampling rate from $f_{in}=4 \text{ kHz}$ to $f_{out}=250 \text{ Hz}$. We then combined ST levels with a depthwise separable convolution, followed by two BiLSTM layers, which captured feature trajectories over time. A final dense layer supported three target classes: murmur present, absent or unknown.

2.3. Scattering transform

The scattering transform is a deep convolutional network whose filters are defined a priori instead of being learned from data. We refer to (5) for a mathematical introduction and to (6) for a recent review of the state of the art. Specifically, every layer contains filters of the form

$$\boldsymbol{\psi}_{j}: t \mapsto 2^{-j/Q} \boldsymbol{\psi}(2^{-j/Q}t), \tag{1}$$

where ψ is a wavelet, Q is a constant number of filters per octave, and the scale variable j is an integer ranging between 0 and J. Hereafter, we take the "mother wavelet" ψ to be a Morlet wavelet with a quality factor of Q = 1 and a center frequency of $\xi = 1490$ Hz and a frequential width of σ =155 Hz. The Morlet wavelet is a complex-valued function with a Gaussian envelope while being approximately analytic, i.e., with negligible Fourier coefficients outside of the half-line of positive frequencies ($\omega > 0$). Furthermore, we set the maximum wavelet scale to J = 11 after a process of trial and error.

Let ϕ_T be a Gaussian filter of cutoff frequency equal to 1/T. The first two orders of the scattering transform are

$$\mathbf{S}_{1}\boldsymbol{x}(t, j_{1}) = |\boldsymbol{x} \ast \boldsymbol{\psi}_{j_{1}}| \ast \boldsymbol{\phi}_{T}(t) \quad \text{and} \\ \mathbf{S}_{2}\boldsymbol{x}(t, j_{1}, j_{2}) = \left| |\boldsymbol{x} \ast \boldsymbol{\psi}_{j_{1}}| \ast \boldsymbol{\psi}_{j_{2}} \right| \ast \boldsymbol{\phi}_{T}(t), \quad (2)$$

where the vertical bars and the asterisk denote complex modulus and convolution product respectively.

For every discretized value of time t, we concatenate first-order coefficients $\mathbf{S_1} \boldsymbol{x}(t, j_1)$ and second-order coefficients $\mathbf{S_1} \boldsymbol{x}(t, j_1, j_2)$ to produce a multidimensional time series $\mathbf{S} \boldsymbol{x}(t, p)$; where the multiindex p, known as scattering *path*, either denotes an singleton (j_1) or a pair (j_1, j_2) . With J = 11, this results in 12 first-order and 63 secondorder paths for a total number of P = 75 paths.

To control the degree of time invariance, we modified the Python scattering package Kymatio¹ to set the time scale of Gaussian averaging to T = 7.81 ms. Note that this T is less than the customary $2^J/\xi$. Rather, the filterbank $\{\psi_j\}_j$ covers the frequency range $[2^{-J}\xi;\xi] =$ [0.73 Hz; 1490 Hz] whereas the scattering transform is discretized at a Nyquist rate of 2/T = 256 Hz. This rate is chosen to be higher than typical patient heart rates yet considerably lower than the PCG acquisition rate (4 kHz).

2.4. Depthwise separable convolution

A depthwise separable convolution (DSC) splits the computation into two operations: depthwise convolution X linearly filters the PCG recording for each ST path while the pointwise convolution Y linearly combines these transformed paths, as in equations (3) and (4)

$$X[p] = \sum_{l=1}^{L} S[l, p] F[p, l]$$
(3)

$$Y[n] = \beta \left[B[n] + \sum_{p=1}^{P} X[p] G[p,n] \right]$$
(4)

where $L \in \{1\}$ and P represent the number of recordings and paths, respectively. F and G refer to the filter maps, N is the number of pointwise mixes, B is the bias and β represents the activation function. The total number of convolution coefficients including the bias weights is therefore $P \times L + (P+1) \times N$. This is often a reduction in parameters compared to regular convolution. We used a DSC layer with N = P = 66 (chosen to be on the order of the number of paths) and ReLU activation.

2.5. Implementation

The PCG recording lengths in the training set were of various durations. Therefore to reduce computational requirements, we reduced the time span of the training batches to 5 s. Longer recordings were split into multiple training sub-sequences of 5 s. We applied a padding target for sub-sequences of duration less than 5 s to remove their unused samples from participation in the loss function.

We used two BiLSTM layers of 100 hidden units. The dense layer with softmax activation used cross-entropy loss to support multiple classes. We used a learning rate of 0.001 with the Adam optimizer.

During training, we used the "murmur location" information to assign targets to corresponding recordings. During evaluation, we classified each recording by selecting the highest average class probability over all segments for that recording. If any recording was classified as "murmur present" for a given patient, that patient was assigned a diagnosis of "murmur present". In this phase of system development, we simply set the outcome class to abnormal if a murmur present diagnosis was assigned. The system was developed with TensorFlow and the Kymatio ST package.

The 10-fold cross-validation data partitions were 90% training and 10% testing for each fold. The validation set, 10% of training, was used for early stopping (20 epochs).

¹Official website of Kymatio: https://www.kymat.io

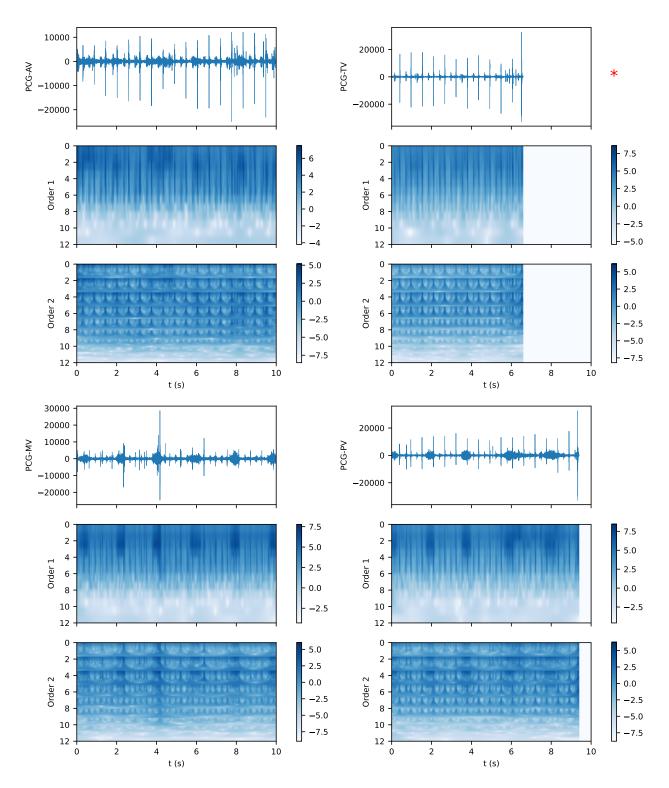


Figure 1. PCG scattering transform of recording 13918, with murmur class "present" and outcome class "abnormal". Locations AV (top left), TV (top right), MV (bottom left) and PV (bottom right) shown. Top to bottom, for each location: input PCG (linear scale), 12 1^{st} -order and 63 2^{nd} -order ST paths (log scale). The red asterisk indicates that the TV recording was considered a murmur location by auscultation. A maximum of 10 s is displayed for each location.

Murmur	Local CV	Train	Valid.	Test	Rank
AUROC	$0.849 {\pm} 0.047$	0.921	0.877	0.890	
AUPRC	$0.695 {\pm} 0.06$	0.787	0.726	0.721	
F-measure	$0.569 {\pm} 0.037$	0.551	0.483	0.522	
Accuracy	$0.863 {\pm} 0.031$	0.850	0.785	0.824	
WtAccuracy	$v0.753 \pm 0.078$	0.685	0.557	0.637	27/40
Cost	18477 ± 2626	20017	16230	20899	
Outcome	Local CV	Train	Valid.	Test	Rank
Outcome AUROC	Local CV 0.323±0.035				Rank
		0.500	0.500	0.500	Rank
AUROC	0.323±0.035	0.500 0.500	0.500	0.500 0.500	Rank
AUROC AUPRC	0.323±0.035 0.406±0.021	0.500 0.500	0.500 0.500 0.326	0.500 0.500	Rank
AUROC AUPRC F-measure	$\begin{array}{c} 0.323 {\pm} 0.035 \\ 0.406 {\pm} 0.021 \\ 0.283 {\pm} 0.031 \end{array}$	0.500 0.500 0.326 0.484	0.500 0.500 0.326	0.500 0.500 0.277	Rank

Table 1. Challenge metrics (2) and ranking for murmur and outcome classification during local cross-validation and on the Challenge server hidden data (test results in bold).

3. Results

As shown in Table 1, local 10-fold cross-validation test results achieved a weighted accuracy of 0.753 ± 0.078 (mean±standard deviation) for murmur classification and 15397 ± 830 for the clinical outcome cost. Our entry successfully trained a model on the Challenge server and obtained a weighted accuracy of 0.637 for murmur classification and a clinical outcome cost of 15083 on the hidden test data. The hidden test AUROC and AUPRC for murmur classification was 0.890 and 0.721, respectively. The AUCs for outcome classification indicate that the performance was close to a chance classifier.

Figure 1 shows scattering results for aortic, mitral, pulmonary and tricuspid valve recording locations of a patient having abnormal heart murmurs.

Our submitted entry used the GPU and completed training of the baseline models in just over $71 \min$ and prediction of the hidden validation set in 2.5 min, within the maximum allowable times of 48 h and 24 h, respectively.

4. Discussion

Our classifier architecture showed promising results in this first phase of development. The murmur classifier performance indicates generalization to unseen data. Clinical outcome sub-classification to distinguish pathological from benign murmurs will be developed in future work.

Figure 1 demonstrates that scale changes are captured over time despite a temporal resolution that is much lower than the 4 kHz acquisition rate. It also conveys the difficulty of the classification problem: although the murmur class was labelled "murmur present" and the overall outcome was "abnormal", the murmur was only present in one of the four locations, whereas it was considered absent in the other three.

We hope to improve the system by including more of the available training annotations, notably, the segmentation of diastole and systole timing. Extensions to our approach to explore include: using the demographic data, improving the decision rule, and searching hyperparameters.

Acknowledgements

We acknowledge use of PeriGen computing resources.

References

- [1] Warrick PA, Lostanlen V, Eickenberg M, Homsi MN, Campoy Rodriguez A, Andén J. Arrhythmia classification of 12-lead and reduced-lead electrocardiograms via recurrent networks, scattering, and phase harmonic correlation. Physiological Measurement 2022;URL http://iopscience.iop.org/article/10.1088/1361-65 79/ac77d1.
- [2] Reyna MA, Kiarashi Y, Elola A, Oliveira J, Renna F, Gu A, Perez-Alday EA, Sadr N, Sharma A, Mattos S, Coimbra MT, Sameni R, Rad AB, Clifford GD. Heart murmur detection from phonocardiogram recordings: The George B. Moody PhysioNet Challenge 2022. medRxiv 2022;URL https://doi.org/10.1101/2022.0 8.11.22278688.
- [3] Oliveira J, Renna F, Costa PD, Nogueira M, Oliveira C, Ferreira C, Jorge A, Mattos S, Hatem T, Tavares T, Elola A, Rad AB, Sameni R, Clifford GD, Coimbra MT. The CirCor DigiScope dataset: from murmur detection to murmur classification. IEEE Journal of Biomedical and Health Informatics 2021;26(6):2524–2535.
- [4] Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE. Physiobank, Physiotoolkit, and Physionet: Components of a new research resource for complex physiologic signals. Circulation 2000; 101(23):e215–e220.
- [5] Mallat S. Understanding deep convolutional networks. Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences 2016;374(2065):20150203.
- [6] Warrick PA, Lostanlen V, Homsi MN. Hybrid scattering-LSTM networks for automated detection of sleep arousals. Physiological Measurement July 2019; 40(7):074001.

Address for correspondence: philip.warrick@perigen.com