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Abstract

We describe an automatic detector of phonocardiogram
murmurs. Our detector composes the scattering transform
(ST) and a long short-term memory (LSTM) network. It
is trained on data as part of the Heart Murmur Detec-
tion from Phonocardiogram Recordings: The George B.
Moody PhysioNet Challenge 2022. The ST captures short-
term temporal ECG modulations while reducing its sam-
pling rate to a few samples per typical heart beat. We pass
the output of the ST to a depthwise-separable convolution
layer which transforms responses separately for each ST
coefficient and then combines resulting values across ST
coefficients. At a deeper level, 2 LSTM layers integrate lo-
cal variations of the input over long time scales. We train
in an end-to-end fashion as a classification problem with
three murmur classes: present, absent or unknown. Ad-
ditionally, we use the model to classify clinical outcome
as normal or abnormal. These two classifications deter-
mine whether clinical followup should occur. Our team
“PAWPCG” obtained an official score on the hidden test
data of 0.637 for weighted accuracy on murmur classifica-
tion (rank: 27 of 40 teams) and a clinical outcome cost of
15083 (rank: 32 of 39 teams).

1. Introduction

The phonocardiogram (PCG) is a recording of heart
sound that provides a low-cost, non-invasive diagnostic
tool to assess turbulent blood flow patterns (“murmurs”)
suggestive of heart valve dysfunction. Physicians’ subjec-
tive interpretation of PCG sounds has historically had low
sensitivity and specificity for the diagnosis of pathologi-
cal heart murmurs. To improve diagnostic performance,
we developed a PCG heart murmur detector using the
Scattering Transform (ST) and Long Short-Term Memory
(LSTM) networks. The PhysioNet/Computing in Cardi-
ology Challenge 2021 offers a benchmark for automatic
detection of heart murmurs from PCG.

Prior literature on PCG classification exhibits a method-
ological divide: signal processing versus machine learn-
ing. On one hand, digital signal processing methods in-
clude low-pass filters, fast Fourier Transform, and wavelet

transform. On the other hand, machine learning meth-
ods include random forests, support vector machines, con-
volutional neural networks and long short-term memory
(LSTM) networks. While feature engineering lacks flex-
ibility to represent fine-grain class boundaries, a purely
learned pipeline may lead to uninterpretable overfitting.

Our contribution to the Challenge aims to overcome the
divide by combining insights from signal processing and
machine learning. At a first stage, we extract time scatter-
ing transform (ST) coefficients for each PCG recording.
Although this stage is not trainable, it offers numerical
guarantees of stability to time warps. At a second stage,
we train a depthwise separable convolution (DSC) net-
work, followed by a bidirectional LSTM (BiLSTM) net-
work. While DSC combines local scattering coefficients,
the BiLSTM can capture longer-term trends in heart-sound
activity. Our system is inspired from previous Challenge
work on ECG arrhythmia detection(1).

2. Methods

2.1. Data

The PhysioNet/CinC Challenge 2022 data (2; 3; 4) pro-
vides multiple PCG recordings for each patient. Each pa-
tient in the Challenge data has one or more recordings
from one or more auscultation locations: aortic valve (AV),
mitral valve (MV), pulmonary valve (PV), tricuspid valve
(TV), and other (Phc). The recordings were collected se-
quentially (not simultaneously) from different auscultation
locations using a digital stethoscope. The number, loca-
tion, and duration of the recordings vary between patients.
The Challenge labels consist of two types: murmur-related
labels indicate whether an expert annotator detected the
presence or absence of a murmur in a patient from the
recordings or whether the annotator was unsure about the
presence or absence of a murmur. Outcome-related labels
indicate the normal or abnormal clinical outcome diag-
nosed by a medical expert.

The dataset include recordings from 1568 patients, of
which 942 patients with 3163 PCG recordings are used as
the training dataset. The remaining 626 patients are re-
served as a hidden validation set for Challenge scoring.
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2.2. Overall Processing

We presented unpreprocessed PCG signals to an ST rep-
resentation layer, which reduced the sampling rate from
fin=4 kHz to fout=250Hz. We then combined ST levels
with a depthwise separable convolution, followed by two
BiLSTM layers, which captured feature trajectories over
time. A final dense layer supported three target classes:
murmur present, absent or unknown.

2.3. Scattering transform

The scattering transform is a deep convolutional net-
work whose filters are defined a priori instead of being
learned from data. We refer to (5) for a mathematical in-
troduction and to (6) for a recent review of the state of the
art. Specifically, every layer contains filters of the form

ψj : t 7→ 2−j/Qψ(2−j/Qt), (1)

where ψ is a wavelet, Q is a constant number of filters per
octave, and the scale variable j is an integer ranging be-
tween 0 and J . Hereafter, we take the “mother wavelet” ψ
to be a Morlet wavelet with a quality factor ofQ = 1 and a
center frequency of ξ = 1490Hz and a frequential width of
σ=155Hz. The Morlet wavelet is a complex-valued func-
tion with a Gaussian envelope while being approximately
analytic, i.e., with negligible Fourier coefficients outside
of the half-line of positive frequencies (ω > 0) . Further-
more, we set the maximum wavelet scale to J = 11 after a
process of trial and error.

Let φT be a Gaussian filter of cutoff frequency equal to
1/T . The first two orders of the scattering transform are

S1x(t , j1 ) = |x ∗ψj1 | ∗ φT (t) and

S2x(t , j1 , j2 ) =
∣∣∣|x ∗ψj1 | ∗ψj2

∣∣∣ ∗ φT (t), (2)

where the vertical bars and the asterisk denote complex
modulus and convolution product respectively.

For every discretized value of time t, we concatenate
first-order coefficients S1x(t , j1 ) and second-order coef-
ficients S1x(t , j1 , j2 ) to produce a multidimensional time
series Sx(t , p); where the multiindex p, known as scatter-
ing path, either denotes an singleton (j1) or a pair (j1, j2).
With J = 11, this results in 12 first-order and 63 second-
order paths for a total number of P = 75 paths.

To control the degree of time invariance, we modified
the Python scattering package Kymatio1 to set the time
scale of Gaussian averaging to T = 7.81ms. Note that
this T is less than the customary 2J/ξ. Rather, the fil-
terbank {ψj}j covers the frequency range [2−Jξ; ξ] =
[0.73Hz; 1490Hz] whereas the scattering transform is dis-
cretized at a Nyquist rate of 2/T = 256Hz. This rate is

1Official website of Kymatio: https://www.kymat.io

chosen to be higher than typical patient heart rates yet con-
siderably lower than the PCG acquisition rate (4 kHz).

2.4. Depthwise separable convolution

A depthwise separable convolution (DSC) splits the
computation into two operations: depthwise convolution
X linearly filters the PCG recording for each ST path while
the pointwise convolution Y linearly combines these trans-
formed paths, as in equations (3) and (4)

X [p] =

L∑
l=1

S [l, p]F [p, l] (3)

Y [n] = β

[
B [n] +

P∑
p=1

X [p]G [p, n]

]
(4)

where L ∈ {1} and P represent the number of record-
ings and paths, respectively. F and G refer to the filter
maps, N is the number of pointwise mixes, B is the bias
and β represents the activation function. The total num-
ber of convolution coefficients including the bias weights
is therefore P ×L+(P +1)×N . This is often a reduction
in parameters compared to regular convolution. We used a
DSC layer with N = P = 66 (chosen to be on the order
of the number of paths) and ReLU activation.

2.5. Implementation

The PCG recording lengths in the training set were
of various durations. Therefore to reduce computational
requirements, we reduced the time span of the training
batches to 5 s. Longer recordings were split into multiple
training sub-sequences of 5 s. We applied a padding target
for sub-sequences of duration less than 5 s to remove their
unused samples from participation in the loss function.

We used two BiLSTM layers of 100 hidden units. The
dense layer with softmax activation used cross-entropy
loss to support multiple classes. We used a learning rate
of 0.001 with the Adam optimizer.

During training, we used the “murmur location” infor-
mation to assign targets to corresponding recordings. Dur-
ing evaluation, we classified each recording by selecting
the highest average class probability over all segments for
that recording. If any recording was classified as “murmur
present” for a given patient, that patient was assigned a di-
agnosis of “murmur present”. In this phase of system de-
velopment, we simply set the outcome class to abnormal if
a murmur present diagnosis was assigned. The system was
developed with TensorFlow and the Kymatio ST package.

The 10-fold cross-validation data partitions were 90%
training and 10% testing for each fold. The validation set,
10% of training, was used for early stopping (20 epochs).
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Figure 1. PCG scattering transform of recording 13918, with murmur class “present” and outcome class “abnormal”.
Locations AV (top left), TV (top right), MV (bottom left) and PV (bottom right) shown. Top to bottom, for each location:
input PCG (linear scale), 12 1st-order and 63 2nd-order ST paths (log scale). The red asterisk indicates that the TV
recording was considered a murmur location by auscultation. A maximum of 10 s is displayed for each location.
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Murmur Local CV Train Valid. Test Rank
AUROC 0.849±0.047 0.921 0.877 0.890
AUPRC 0.695±0.06 0.787 0.726 0.721
F-measure 0.569±0.037 0.551 0.483 0.522
Accuracy 0.863±0.031 0.850 0.785 0.824
WtAccuracy0.753±0.078 0.685 0.557 0.637 27/40
Cost 18477±2626 20017 16230 20899

Outcome Local CV Train Valid. Test Rank
AUROC 0.323±0.035 0.500 0.500 0.500
AUPRC 0.406±0.021 0.500 0.500 0.500
F-measure 0.283±0.031 0.326 0.326 0.277
Accuracy 0.359±0.05 0.484 0.484 0.383
WtAccuracy 0.584±0.061 0.824 0.824 0.756
Cost 15397±830 14851 13836 15083 32/39

Table 1. Challenge metrics (2) and ranking for murmur
and outcome classification during local cross-validation
and on the Challenge server hidden data (test results in
bold).

3. Results

As shown in Table 1, local 10-fold cross-validation
test results achieved a weighted accuracy of 0.753±0.078
(mean±standard deviation) for murmur classification and
15397±830 for the clinical outcome cost. Our entry suc-
cessfully trained a model on the Challenge server and ob-
tained a weighted accuracy of 0.637 for murmur classifi-
cation and a clinical outcome cost of 15083 on the hidden
test data. The hidden test AUROC and AUPRC for mur-
mur classification was 0.890 and 0.721, respectively. The
AUCs for outcome classification indicate that the perfor-
mance was close to a chance classifier.

Figure 1 shows scattering results for aortic, mitral, pul-
monary and tricuspid valve recording locations of a patient
having abnormal heart murmurs.

Our submitted entry used the GPU and completed train-
ing of the baseline models in just over 71min and pre-
diction of the hidden validation set in 2.5min, within the
maximum allowable times of 48 h and 24 h, respectively.

4. Discussion

Our classifier architecture showed promising results in
this first phase of development. The murmur classifier per-
formance indicates generalization to unseen data. Clini-
cal outcome sub-classification to distinguish pathological
from benign murmurs will be developed in future work.

Figure 1 demonstrates that scale changes are captured
over time despite a temporal resolution that is much lower
than the 4 kHz acquisition rate. It also conveys the diffi-
culty of the classification problem: although the murmur
class was labelled “murmur present” and the overall out-

come was “abnormal”, the murmur was only present in
one of the four locations, whereas it was considered absent
in the other three.

We hope to improve the system by including more of the
available training annotations, notably, the segmentation of
diastole and systole timing. Extensions to our approach to
explore include: using the demographic data, improving
the decision rule, and searching hyperparameters.
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